If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=16t^2+104t+6
We move all terms to the left:
0-(16t^2+104t+6)=0
We add all the numbers together, and all the variables
-(16t^2+104t+6)=0
We get rid of parentheses
-16t^2-104t-6=0
a = -16; b = -104; c = -6;
Δ = b2-4ac
Δ = -1042-4·(-16)·(-6)
Δ = 10432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10432}=\sqrt{64*163}=\sqrt{64}*\sqrt{163}=8\sqrt{163}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-104)-8\sqrt{163}}{2*-16}=\frac{104-8\sqrt{163}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-104)+8\sqrt{163}}{2*-16}=\frac{104+8\sqrt{163}}{-32} $
| 8+8v=80 | | -b=60-61 | | 2x=5(x-1)- | | s+1.3=18 | | 3(1)+5y=13 | | 9+3n+4=37 | | 3x=(-15 | | 3x+1+4x-16=180 | | 16+a=21 | | 4w+34=-2(w-2) | | (8+5x)=142 | | -40-15=t | | -4(x-4)+5=6+x | | 8+5x=142 | | 2/3b+5=-1/5b-4 | | 17m-9m=72 | | 10−2f=–3f | | 3(-1)+5y=15 | | 2/4b+5=-1/5b-4 | | 5/6x+2/3-3/4x=21/2 | | 4p-28=40 | | s=(8-2)*(180) | | -2.3=4b | | 3x(3/4)=3x | | –m=84;m=184 | | 80=7d+3d | | –7t+8=–3t | | /6x-32=-2x+40 | | s-10=22 | | 1/x=3/14 | | –4h=–3h−5 | | 2w-11.6=2.4 |